首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 °C
Authors:Shanwen Tao  John TS Irvine  
Institution:aSchool of Chemistry, University of Saint Andrews, Saint Andrews, Fife KY16 9ST, UK
Abstract:High-temperature proton conductors have wide applications in the areas of fuel cells, electrolysis and hydrogen separation. Barium zirconate-based materials are of interest due to their good stability and high protonic conductivity. The reported conductivity of these ceramic materials is generally less than 10−2 S/cm, even at high temperatures. This is not high enough for an electrolyte-supported device to achieve an ASR of less than 0.2 Ω cm2 therefore thin film electrolytes are required for successful application. As BaZrO3-based materials have to be sintered at temperatures as high as 1700 °C, this makes it difficult to find a suitable supporting electrode which will not undergo significant chemical reaction with the BaZrO3-based electrolyte during fabrication of the required electrode supported electrolyte. In this paper, proton-conducting BaZr0.8Y0.2O2.9 was successfully sintered at 1325 °C with a relative density of 96% via addition of 1 wt% ZnO. Fabrication of electrochemical cells using proton-conducting BaZr0.8Y0.2O2.9 as the electrolyte thus becomes possible. The formula of the 1 wt% ZnO added sample is Ba0.97Zr0.77Y0.19Zn0.04O3−δ which exhibits a tetragonal structure with space group P4/mbm (127); a=5.9787(1) Å, c=4.2345(1) Å, V=151.36(1) Å3. It was found that a solid solution was formed for a limited range of Zn doping. Conductivity has been studied as a function of atmosphere (air, dry and wet 5% H2/Ar) with the changes in bulk and grain boundary on changing atmosphere being monitored as a function of time. The total conductivity of Ba0.97Zr0.77Y0.19Zn0.04O3–δ is 1.0×10−3 S/cm above 600 °C therefore it may be used as a proton-conducting thin film electrolyte for efficient electrochemical devices at such temperatures. The grain boundary resistance is insignificant at high temperature for the well-sintered sample.
Keywords:Proton conductor  Conductivity  Sintering  BaZr0  8Y0  2O2  9
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号