首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic lattice Monte Carlo simulation of viscoelastic subdiffusion
Authors:Christian C Fritsch  Jörg Langowski
Affiliation:BIOMS Center for Modeling and Simulation in the Biosciences, D-69120 Heidelberg, Germany.
Abstract:We propose a kinetic Monte Carlo method for the simulation of subdiffusive random walks on a Cartesian lattice. The random walkers are subject to viscoelastic forces which we compute from their individual trajectories via the fractional Langevin equation. At every step the walkers move by one lattice unit, which makes them differ essentially from continuous time random walks, where the subdiffusive behavior is induced by random waiting. To enable computationally inexpensive simulations with n-step memories, we use an approximation of the memory and the memory kernel functions with a complexity O(log?n). Eventual discretization and approximation artifacts are compensated with numerical adjustments of the memory kernel functions. We verify with a number of analyses that this new method provides binary fractional random walks that are fully consistent with the theory of fractional Brownian motion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号