首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Glycine phases formed from frozen aqueous solutions: Revisited
Authors:N V Surovtsev  S V Adichtchev  V K Malinovsky  A G Ogienko  V A Drebushchak  A Yu Manakov  A I Ancharov  A S Yunoshev  E V Boldyreva
Institution:Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
Abstract:Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I(h) was observed in all the cases. On cooling at the rates of 0.5 K∕min and 5 K∕min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w∕w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I(h) and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 A?, b = 25.867 A?, c = 5.610 A?, β = 113.12ordinal indicator, masculine]); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号