首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational deexcitation and rotational excitation of H(2) and D(2) scattered from Cu(111): Adiabatic versus non-adiabatic dynamics
Authors:A S Muzas  J I Juaristi  M Alducin  R Di?ez Muin?o  G J Kroes  C Di?az
Institution:Departamento de Qui?mica Mo?dulo 13, Universidad Auto?noma de Madrid, 28049 Madrid, Spain.
Abstract:We have studied survival and rotational excitation probabilities of H(2)(v(i) = 1, J(i) = 1) and D(2)(v(i) = 1, J(i) = 2) upon scattering from Cu(111) using six-dimensional (6D) adiabatic (quantum and quasi-classical) and non-adiabatic (quasi-classical) dynamics. Non-adiabatic dynamics, based on a friction model, has been used to analyze the role of electron-hole pair excitations. Comparison between adiabatic and non-adiabatic calculations reveals a smaller influence of non-adiabatic effects on the energy dependence of the vibrational deexcitation mechanism than previously suggested by low-dimensional dynamics calculations. Specifically, we show that 6D adiabatic dynamics can account for the increase of vibrational deexcitation as a function of the incidence energy, as well as for the isotope effect observed experimentally in the energy dependence for H(2)(D(2))/Cu(100). Furthermore, a detailed analysis, based on classical trajectories, reveals that in trajectories leading to vibrational deexcitation, the minimum classical turning point is close to the top site, reflecting the multidimensionally of this mechanism. On this site, the reaction path curvature favors vibrational inelastic scattering. Finally, we show that the probability for a molecule to get close to the top site is higher for H(2) than for D(2), which explains the isotope effect found experimentally.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号