首页 | 本学科首页   官方微博 | 高级检索  
     


Distribution and properties of catalytically active Cu2+ sites in mesoporous MCM-41 modified with Al, Zr, or W ions
Authors:A. V. Kucherov  A. V. Ivanov  T. N. Kucherova  A. N. Shigapov
Affiliation:(1) Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia;(2) Ford Research Center, Aachen, Germany
Abstract:The surface of pure mesoporous SiO2 with an MCM-41 structure has been modified by introducing Al, Zr, or W ions (1 mmol/g). The original and modified materials have been loaded with Cu2+ ions. The distribution, properties, and thermal stability of different Cu2+ sites have been studied by EPR and IR spectroscopy. The resulting catalysts have been tested for activity in ethane oxidation. The modification of original MCM-41 exerts a very strong effect on the stability of isolated Cu2+ ions on the support surface. Among the modified supports, Al-MCM-41 affords the highest thermal stability and degree of dispersion (70–80%) of the copper-containing phase. There is no correlation between the total number of surface Cu2+ sites and the catalytic activity. The specific catalytic activity (per Cu2+ ion accessible to the reactants) depends strongly on the local structure of the sites. The isolated pentacoordinated Cu2+ sites stabilized by the Al-MCM-41 surface show a comparatively high activity in the sample calcined at 520°C. The heat treatment of Cu/Al-MCM-41 at 650–750°C reduces the specific activity of the catalytic sites by a factor of ~20 without sintering the copper phase, as in the case of CuHZSM-5 zeolite. The least dispersed copper phase, which is observed in the original MCM-41 and likely consists of aggregates of weakly interacting Cu2+ ions, exhibits the highest specific activity and thermal stability. In the case of Cu/W-MCM-41, heat treatment causes both the sintering of copper particles and a decrease in the specific activity of the surface Cu2+ ions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号