首页 | 本学科首页   官方微博 | 高级检索  
     


Separation-Induced Transition to Turbulence: Second-Moment Closure Modelling
Authors:I. Hadžić  K. Hanjalić
Affiliation:(1) Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Abstract:The paper presents some results of application of a low-Re-number second-moment closure (SMC) to modelling the laminar-to-turbulent transition induced by a separation bubble. The same model, tested earlier in a number of low and high-Re-number flows, was found also to reproduce reasonably well several cases of bypass transition, as well as cyclic sequence of laminarization and turbulence revival in oscillating flows at transitional Re numbers, without any artificial transition triggering. The focus of the paper is on separation-induced transition in flow over a flat plate with a circular leading edge, and on a plane surface on which a laminar separation bubble was generated by imposed suction on the wall-opposite boundary. The results show acceptable agreement with available experimental data, large-eddy and direct numerical simulations (LES, DNS). The importance of applying higher-order discretization schemes for reproducing both the bubble and the transition is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:transition  separation  second-moment closures
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号