首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric estimation for censored lifetimes suffering from unknown selection bias
Authors:A. Guilloux
Affiliation:(1) LSTA, Universite Pierre et Marie Curie — Paris 6, 175 rue du Chevaleret, 75013 Paris, France
Abstract:
In a population of individuals, where the random variable (r.v.) σ denotes the birth time and X the lifetime, we consider the case, where an individual can be observed only if its life-line 
$$mathcal{L}$$
(σ, X) = {(σ + y, y), 0 ≤ yX} intersects a given Borel set S in ℝ × ℝ+. Denoting by σ S and X S the birth time and lifetime for the observed individuals, we point out that the distribution function (d.f.) F S of the r.v. X S suffers from a selection bias in the sense that F S = ∝ w d F/μ S, where w and μ S depend only on the distribution of σ and on F, the d.f. of X. Assuming in addition that the r.v. X S is randomly right-censored as soon as the individual is selected, we construct a productlimit estimator 
$$hat F_mathcal{S} $$
for the d.f. F S and a nonparametric estimator ŵ for the weight function w. We prove a consistency result for ŵ and a weak convergence result for 
$$hat F_mathcal{S} $$
. We establish in addition an exponential bound for 
$$hat F_mathcal{S} $$
.
Keywords:counting process  exponential bound  nonparametric inference  martingale  right-censored data  selection-bias  weak convergence of processes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号