首页 | 本学科首页   官方微博 | 高级检索  
     


Elastic bag model for molecular dynamics simulations of solvated systems: application to liquid argon
Authors:Li Yuhui  Krilov Goran  Berne B J
Affiliation:Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA.
Abstract:A new approach is developed to study the dynamics of the localized process in solutions and other condensed phase systems. The approach employs a fluctuating elastic boundary (FEB) model which encloses the simulated system in an elastic bag that mimics the effects of the bulk solvent. This alleviates the need for periodic boundary conditions and allows for a reduction in the number of solvent molecules that need to be included in the simulation. The boundary bag is modeled as a mesh of quasi-particles connected by elastic bonds. The FEB model allows for volume and density fluctuations characteristic of the bulk system, and the shape of the boundary fluctuates during the course of the simulation to adapt to the configuration fluctuations of the explicit solute-solvent system inside. The method is applied to the simulation of a Lennard-Jones model of liquid argon. Various structural and dynamical quantities are computed and compared with those obtained from conventional periodic boundary simulations. The agreement between the two is excellent in most cases, thus validating the viability of the FEB method.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号