首页 | 本学科首页   官方微博 | 高级检索  
     


Towards online,continuous monitoring for rheometry of complex fluids
Authors:Julia M. Rees
Affiliation:School of Mathematics and Statistics, Hicks Building, Hounsfield Road, University of Sheffield, S3 7RH, UK
Abstract:This paper presents an overview of the developments that have been made towards the design of an inline rheometer that has the capabilities for monitoring in real time the viscous constitutive parameters of non-Newtonian fluids in a pipe flow. This has potential applications for a wide range of fluids, including hydrocolloid solutions and polymer solutions. This is of relevance to many industries, for example the pharmaceutical, lubrication, food and printing industries. The use of mathematical algorithms for inferring rheological parameters from properties of flow field statistics is explored. Particular focus is given to the development of a flow cell rheometer containing a T-junction geometry with the capacity to induce a range of shear rates in the vicinity of the bend, and a distribution of elongational viscosities along the back-wall. Such features create an information-rich flow field that is beneficial for the development of a rheometer with a fast response time that is suitable for commercial purposes.
Keywords:Microfluidics   Rheology   Rheometry   Inverse methods   Lab on chip   Capillary rheometer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号