A Validated Quantification of Benzocaine in Lozenges Using TLC and a Flatbed Scanner |
| |
Authors: | Barbara Milz Bernd Spangenberg |
| |
Affiliation: | 1. Institute of Process Engineering, University of Offenburg, Badstrasse 24, 77652, Offenburg, Germany
|
| |
Abstract: | We present a video-densitometric quantification method for benzocaine in lozenges. The quantification is based on a derivatisation reaction with 4-dimethylaminobenzaldehyde. Measurements were carried out using a 16-bit flatbed scanner. Benzocaine was separated to a distance of 50 mm in a vertical developing chamber without vapour saturation. We present an RP-18 phase separation on a cyanopropyl plate (Merck, Darmstadt, Germany) using water, CH3CN, dioxane, ethanol, and NH3 (25 %) (8 + 2 + 1 + 1 + 0.05, v/v) as the mobile phase. We also separated benzocaine in a normal phase system on silica gel 60 LiChrospere® plates (Merck, Darmstadt, Germany) with the mobile phase MTBE/cyclohexane (1 + 1, v/v). The calibration functions for benzocaine in both separations were linear in the range from 1 to 1,000 ng per spot. The range of linearity covers two magnitudes of power because the Kubelka–Munk expression was used for data transformation. In the cyanopropyl-system, the benzocaine amount was quantified as 242.5 ± 18.2 ng in a spot or 6.86 ± 0.52 mg in a single lozenge. The amount of 7.0 mg benzocaine per lozenge was labelled. The combined uncertainty of sample and calibration measurements was statistically calculated using a significance level of α = 0.05 to a total relative uncertainty of 7.49 %. The separation method is inexpensive, fast and reliable. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|