首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compositional arrangement of rod/shell nanoparticles: an approach to provide efficient plasmon waveguides
Authors:A Ahmadivand  S Golmohammadi
Institution:1. Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
2. School of Engineering-Emerging Technologies, University of Tabriz, Tabriz, 5166614761, Iran
Abstract:In this work, we investigated the optical properties of a novel compositional configuration of gold nanorod and silver nanoshell which is embedded in a SiO2 substance. The proper geometrical sizes for compositional rod/shell arrangement have been obtained based on the position and peak of plasmon resonance at λ ~1550 nm. Adjusting the plasmon resonance position at declared spectrum helps us to provide an arrangement which shows high efficiency and minimum losses. The influence of destructive components such as internal damping and scattering on the rod/shell combination is demonstrated by corresponding diagrams. Moreover, we proposed a nano-array based on examined configuration and the quality of light transmission along the array is studied. We figured out and depicted optical properties of the array such as transmission loss factors, group velocities, transmitted power, transmission quality, and two-dimensional snapshots of surface plasmons (SPs) coupling between nanoparticles arrangements under transverse and longitudinal modes excitations. Ultimately, it is shown that the suggested nanostructure based on studied nanoparticles configuration has a potential to utilize in designing nanophotonic devices such as splitters, couplers, and routers. Finite-difference time-domain method (FDTD) as a major simulation model has been employed to study the features of the waveguide.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号