首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions
Authors:Rokhlenko Yekaterina  Geacintov Nicholas E  Shafirovich Vladimir
Institution:Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States.
Abstract:The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(?+), its deptotonation product G(-H)(?), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(?-) and SO(4)(?-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ~20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(?+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(?), which, at best, reacts only slowly with H(2)O and lives for ~70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(?) can be oxidized further by reaction with CO(3)(?-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号