首页 | 本学科首页   官方微博 | 高级检索  
     


Bubbly flow measurements in hydraulic jumps with small inflow Froude numbers
Authors:Yann Chachereau  Hubert Chanson
Affiliation:The University of Queensland, School of Civil Engineering, Brisbane QLD 4072, Australia
Abstract:The transition from supercritical to subcritical open channel flow is characterised by a strong dissipative mechanism called a hydraulic jump. A hydraulic jump is turbulent and associated with the development of large-scale turbulence and air entrainment. In the present study, some new physical experiments were conducted to characterise the bubbly flow region of hydraulic jumps with relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the time-averaged free-surface profiles was well defined and the longitudinal profiles were in agreement with visual observations. The turbulent free-surface fluctuation profiles exhibited a peak of maximum intensity in the first half of the hydraulic jump roller, and the fluctuations exhibited some characteristic frequencies typically below 3 Hz. The air–water flow properties showed two characteristic regions: the shear layer region in the lower part of the flow and an upper free-surface region above. The air–water shear layer region was characterised by local maxima in terms of void fraction and bubble count rate. Other air–water flow characteristics were documented including the distributions of interfacial velocity and turbulence intensity. The probability distribution functions (PDF) of bubble chord time showed that the bubble chord times exhibited a broad spectrum, with a majority of bubble chord times between 0.5 and 2 ms. An analysis of the longitudinal air–water structure highlighted a significant proportion of bubbles travelling within a cluster structure.
Keywords:Hydraulic jumps   Air bubble entrainment   Bubbly flow properties   Physical modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号