首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A local lagrangian analysis of passive particle advection in a gas flow field
Authors:Mario F Trujillo  Alex E Parkhill
Institution:1. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA;2. Applied Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
Abstract:A local analysis is performed to study the departure from passive advection by small inertial particles based on a Lagrangian framework. The analysis considers heavy particles immersed in a gaseous flow and is restricted to short times, making it relevant to the PIV technique. A necessary (but not sufficient condition) for passive particle advection of inertial particles is that the quantity Λmaxτp be much smaller than one, where Λmax is the largest modulus of the eigenvalues corresponding to the velocity gradient tensor. This allows for the inertial and passive time scales to match beyond the initial transient, and consequently for the respective trajectories to remain relatively close. Due to this important role regarding advection behavior, Λmaxτp is offered as a definition of a local Stokes number, StΛ. Since this quantity is a field quantity, it directly provides indication of when and where passive advection by particles can be expected. A departure equation is obtained in one-dimension, where the influence of initial velocity and gravity are explicitly shown. If the flow is irrotational, the higher dimensional analysis reduces to a set of decoupled one-dimensional equations acting along each respective eigenvector of the velocity gradient tensor. A similar expression is found for the case of a purely temporal flow field.
Keywords:Stokes number  Particle dynamics  Lagrangian particle advection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号