首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A posteriori joint detection of reference fragments in a quasi-periodic sequence
Authors:A V Kel’manov  L V Mikhailova
Institution:(1) Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090, Russia
Abstract:The problem of joint detection of quasi-periodic reference fragments (of given size) in a numerical sequence and its partition into segments containing series of recurring reference fragments is solved in the framework of the a posteriori approach. It is assumed that (i) the number of desired fragments is not known, (ii) an ordered reference tuple of sequences to be detected is given, (iii) the index of the sequence member corresponding to the beginning of a fragment is a deterministic (not random) value, and (iv) a sequence distorted by an additive uncorrelated Gaussian noise is available for observation. It is established that the problem consists of testing a set of hypotheses about the mean of a random Gaussian vector. The cardinality of the set grows exponentially as the vector dimension (i.e., the sequence length) increases. It is shown that the search for a maximum-likelihood hypothesis is equivalent to the search for arguments that minimize an auxiliary objective function. It is proved that the minimization problem for this function can be solved in polynomial time. An exact algorithm for its solution is substantiated. Based on the solution to an auxiliary extremum problem, an efficient a posteriori algorithm producing an optimal (maximum-likelihood) solution to the partition and detection problem is proposed. The results of numerical simulation demonstrate the noise stability of the algorithm.
Keywords:numerical sequence  a posteriori processing  quasi-periodic fragment  optimal joint detection and partition  efficient algorithm
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号