首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrogen adsorption and desorption at iron pyrite FeS2{100} surfaces
Authors:Tao Liu  Israel Temprano  Stephen J Jenkins  David A King  Stephen M Driver
Institution:Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Abstract:We have investigated the interaction of nitrogen with single-crystal iron pyrite FeS(2){100} surfaces in ultra-high vacuum. N(2) adsorbs molecularly at low temperatures, desorbing at 130 K, but does not adsorb dissociatively even at pressures up to 1 bar. Atomic surface N can, however, be obtained with nitrogen ions and/or excited neutral species, generated by passing N(2) through an ion gun. Substantial nitrogen-induced disorder is seen with both ions and neutrals, and no ordered N overlayers form; a decrease in the S/Fe ratio is seen when exposing to nitrogen ions. Recombinative desorption leads to temperature-programmed desorption peaks at 410 and 520-560 K which we associate with interstitial atomic N and substitutional ionic N, respectively, in the surface regions. Thermal repair of sputter damage necessitates segregation of bulk S to the surface, which, over repeated experiments, leads to gross cumulative damage to the bulk crystal. The desorption temperatures associated with recombinative desorption of atomic N from FeS(2){100} are significantly lower than those measured for Fe surfaces. This is linked to the inability of FeS(2){100} to dissociate N(2), but suggests that N(ads) will be significantly more able to react with other species than it is on Fe surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号