首页 | 本学科首页   官方微博 | 高级检索  
     


Colloidal Metal Nanocatalysts: Synthesis,Characterization, and Catalytic Applications
Authors:Kyungsu Na  Qiao Zhang  Gabor A. Somorjai
Affiliation:1. Department of Chemistry, University of California, Berkeley, CA, 94720, USA
2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
Abstract:Metal nanoparticles are key materials in heterogeneous catalysis due to their high catalytic activity and selectivity to the desired product. Accordingly, they are playing a pivotal role in most heterogeneous catalytic reactions that are steeply growing with the development of a colloidal synthetic protocol that enables fine control of size, shape, morphology and composition of metal nanoparticles at an atomic level. These colloidal metal nanoparticles can be dispersed on a rigid support such as mesoporous silica, metal oxide and zeolite, which utilizes metal nanoparticles as model heterogeneous catalysts in industrially important processes involving hydrogenation/dehydrogenation, isomerization and cracking. In this review article, we highlight the recent progress on general colloidal synthetic routes with technological advances in characterization tools that enable the atomic-scale observation of metal nanoparticles. Structure-dependent contributions on the control of product selectivity and turnover rate are also discussed by combining advanced ex situ and in situ surface characterization tools that can monitor the structural change of metal nanocatalysts as well as the evolution of reaction intermediates under the reaction conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号