首页 | 本学科首页   官方微博 | 高级检索  
     


Role of the null space of the DRM in the performance of modulated polarimeters
Authors:LaCasse Charles F  Tyo J Scott  Chipman Russell A
Affiliation:College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.
Abstract:Imaging polarimeters infer the spatial distribution of the polarization state of the optical field as a function of time and/or wavelength. A polarimeter indirectly determines the polarization state by first modulating the intensity of the light field and then demodulating the measured data to infer the polarization parameters. This Letter considers passive Stokes parameter polarimeters and their inversion methods. The most widely used method is the data reduction matrix (DRM), which builds up a matrix equation that can be inverted to find the polarization state from a set of intensity measurements. An alternate strategy uses linear system formulations that allow band limited reconstruction through a filtering perspective. Here we compare these two strategies for overdetermined polarimeters and find that design of the null space of the inversion operator provides degrees of freedom to optimize the trade off between accuracy and signal-to-noise ratio. We further describe adaptive filtering techniques that could optimize the reconstruction for a particular experimental configuration. This Letter considers time-varying Stokes parameters, but the methods apply equally to polarimeters that are modulated in space or in wavelength.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号