首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational studies of Fe(III) binding to bryostatins, bryostatin analogs, siderophores and marine natural products: arguments for ferric complexes in medicinal applications
Authors:Manning Thomas J  Thomas Jessica  Osiro Stephen  Smith Justin  Abadi Giso  Noble Lyn  Phillips Dennis
Institution:Department of Chemistry, Valdosta State University, Valdosta, GA 31698, USA. tmanning@valdosta.edu
Abstract:In this computational study, geometric factors are calculated by applying semi-empirical methods (PM3) that support experimental evidence from this lab where bryostatins can bind trivalent iron with six Fe-O bonds forming an octahedral geometry. The geometric factors are calculated for all 20 structures (Fe3+ bound to bryostatin 1-20) as a neutral, monovalent, and divalent species. The average Fe-O bond distances and bond angles are compared to those of known marine and terrestrial siderophores. From these two data sets, we then examined other known marine natural products (MNPs) that can form a hexavalent complex with six Fe-O bonds and draw conclusions about their potential biological role as marine siderophores. This computational data indicates that Fe(III) strongly bonds to a host of MNPs, increasing their water solubility, contracting their structure, hence allowing transport through cell membranes more readily, and in some cases, stabilizing ester bonds that are susceptible to hydrolysis. It is argued that administering medicinally bryostatin, its analogs or other MNPs as a ferric complex, holds some fundamental chemical advantages compared to its administration as a neutral uncomplexed species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号