首页 | 本学科首页   官方微博 | 高级检索  
     


A Copper-Based Reverse ATRP Process for the Living Radical Polymerization of 4-Vinylpyridine: Discussion on Optimum Reaction Conditions
Authors:Hou Chen  Lingfang Chen  Zhihai Hao  Xiaomin Fu  Zixuan Lu
Affiliation:School of Chemistry and Materials Science , Ludong University , China
Abstract:In this original experiment, reverse atom transfer radical polymerization technique using CuCl2/hexamethyl tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as catalyst complex was applied to living radical polymerization of 4-vinylpyridine (4VP) with azobisisobutyronitrile (AIBN) as initiator. N,N-Dimethylformamide was used as solvent to improve the solubility of the reaction system. The polymerization not only showed the best control of molecular weight and its distribution, but also provided a rather rapid reaction rate with the molar ratio of [4VP]:[AIBN]:[CuCl2]:[Me6-TREN] = 400:1:2:2. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 51.5 kJ· mol1. Use of Cl as the halogen in copper halide had many advantages over the use of Br. The resulting poly(4-vinylpyridine) was successfully used as the macroinitiator to proceed the block polymerization of styrene in the presence of CuCl/Me6-TREN catalyst complex via a conventional ATRP process in DMF.
Keywords:living polymerization  reverse atom transfer radical polymerization  4-vinylpyridine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号