首页 | 本学科首页   官方微博 | 高级检索  
     


Strong covalent bonding modulated graphene oxide/epoxy interfacial enhancement and advanced corrosion resistance
Authors:Ke Zhu  Jingyi Li
Affiliation:1. College of Chemistry and Materials, Weinan Normal University, Weinan, China;2. zk_19860508@163.com;4. Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an, China
Abstract:Abstract

Chemically functionalized graphene oxide [multi-amino functionalized graphene oxide (MAGO)] was achieved by building covalent bonds between graphene oxide (GO) and a small molecule containing benzene structure and multi-amino groups. Fourier transform infrared, X-ray diffraction, X-ray photo electron spectroscopy and TEM-EDX results certified that the molecule was successfully grafted onto GO nanosheets. Subsequently, functionalized GO was incorporated into waterborne epoxy (EP) coating through ball-milling method. This molecular design can significantly improve the dispersion of MAGO in EP matrix, as well as the compatibility and interaction between MAGO and EP. Compared with GO/EP, the water absorption of MAGO/EP decreased from 4.38 to 2.59%, the adhesion strength of MAGO/EP increased from 4.72 to 6.32?MPa after immersion of 40?days in 3.5% NaCl solution. Incorporation of 1?wt% of MAGO into EP matrix prominently improved the long-term corrosion resistance. The impedance modulus of GO/EP coating decreased by four orders after 40 days immersion, while that of MAGO/EP coating only decreased by one order. The impedance modulus was still 1.47?×?108 Ω cm2, and two-time constant wasn’t detected for MAGO/EP coating. This research developed a novel green anticorrosion coating with enhanced durability for metal protection.
Keywords:Waterborne epoxy coating  graphene oxide  strong covalent bonding  corrosion protection  EIS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号