Reverse ATRP Process of Methacrylonitrile in [C4mim][PF6] |
| |
Authors: | Ying Liang Hou Chen Wenying Zhou |
| |
Affiliation: | School of Chemistry and Materials Science , Ludong University , China |
| |
Abstract: | In this original experiment, an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]), was used as the reaction media for reverse atom transfer radical polymerization of methacrylonitrile (MAN) initiated by azobisisobutyronitrile (AIBN) with FeCl3 and isophthalic acid (IA) as catalyst and ligand. The polymerization in [C4mim][PF6] proceeded in a well-controlled manner as evidenced by kinetic studies. Compared with the polymerization in N, N-dimethylformamide (DMF), the polymerization in [C4mim][PF6] not only showed better control of molecular weight and narrower molecular weight distribution but also provided more rapid reaction rate with the ratio of [MAN]:[AIBN]:[FeCl3]:[IA] at 300:1:2:4. The block copolymer PMAN-b-PSt was obtained via a conventional ATRP process in [C4mim][PF6] by using the resulting PMAN as macroinitiator. [C4mim][PF6] and FeCl3/IA could be easily recycled and reused and had no effect on the living nature of reverse atom transfer radical polymerization of MAN. |
| |
Keywords: | Block polymerization living polymerization reverse atom transfer radical polymerization ionic liquid methacrylonitrile |
|
|