首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption of organic matter at mineral/water interfaces. 6. Effect of inner-sphere versus outer-sphere adsorption on colloidal stability
Authors:Johnson Stephen B  Brown Gordon E  Healy Thomas W  Scales Peter J
Institution:Surface & Aqueous Geochemistry Group, Department of Geological & Environmental Sciences, Stanford University, Stanford, California 94305-2115, USA.
Abstract:The effects of the adsorption modes of several low molecular weight (LMW) organic anions (maleate, oxalate, and citrate) on the colloidal stability of corundum-water suspensions have been examined using electrokinetic and shear yield stress (tau(y)) measurements over a broad range of pH conditions and LMW organic anion concentrations. Consistent with previous studies, increasing concentrations of maleate, oxalate, and citrate progressively shift the electrokinetic isoelectric point and pH of the maximum shear yield stress (tau(y,max)) to more acidic conditions. Due to its predominant electrostatic driving force for adsorption, outer-spherically adsorbed maleate possesses a very limited ability to charge reverse the corundum-water interface or bind to the negatively charged corundum surface. By contrast, inner-spherically adsorbed oxalate and citrate can significantly charge reverse the corundum-water interface, with the extent of charge reversal being related to the relative binding strengths of the oxalate and citrate anions. Adsorbed maleate, oxalate, and citrate generate steric barriers to interparticle approach, leading to substantial reductions in the magnitude of tau(y,max) at low to intermediate concentrations of those LMW anions. At the highest anion concentrations investigated, however, increases in tau(y,max) are observed, and can be attributed to the formation of bridging Al(III)-organic surface precipitates, as suggested by in situ attenuated total reflectance Fourier transform infrared spectroscopic measurements of corundum-oxalate suspensions at high oxalate concentrations. The extent of precipitate formation is greatest for the corundum-oxalate system due to the strong dissolution-enhancing properties of the inner-spherically adsorbed oxalate anion (i.e., its ability to generate enhanced concentrations of dissolved Al(III) which can then participate in precipitate formation). The effects of the LMW organic anion adsorption modes on both the forms of the measured tau(y) versus pH data, and the ability to quantitatively compare tau(y) and zeta potential data measured at different corundum concentrations, are also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号