首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of ligand structure on the pathways for iron release from human serum transferrin
Authors:Brook Claire E  Harris Wesley R  Spilling Christopher D  Peng Wang  Harburn J Jonathan  Srisung Sujittra
Institution:Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121-4499, USA.
Abstract:Rate constants for the removal of iron from N-terminal monoferric transferrin have been measured for a series of phosphate and phosphonocarboxylic acids in pH 7.4 0.1 M hepes buffer at 25 degrees C. The bidentate ligands pyrophosphate and phosphonoacetic acid (PAA) show a combination of saturation and first-order kinetics with respect to the ligand concentration. Similar results are observed following a single substitution at the 2-position of PAA to give 2-benzyl-PAA and phosphonosuccinic acid. In contrast, disubstitution at the 2-position to form 2,2-dibenzyl-PAA leads to a marked reduction in iron removal via the first-order pathway. Rate constants were also measured for tripolyphosphate and phosphonodiacetic acid, which are elongated versions of PP(i) and PAA. In both cases, this elongation completely eliminates the first-order component for iron release while having relatively little impact on the saturation pathway. The sensitivity of the first-order component to the structure of the ligand strongly indicates that this pathway involves the binding of the ligand to a specific site on the protein and cannot be attributed to changes in the overall ionic strength of the solution as the ligand concentration increases. It is proposed that this structural sensitivity reflects steric restrictions on the ability of the incoming ligand to substitute for the synergistic carbonate anion to form a relatively unstable Fe-ligand-Tf ternary intermediate, which then dissociates to FeL and apoTf.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号