首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cross polarization, radio frequency field homogeneity, and circuit balancing in high field solid state NMR probes
Authors:Paulson Eric K  Martin Rachel W  Zilm Kurt W
Institution:Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA.
Abstract:Homogeneous radio frequency (RF) fields are important for sensitivity and efficiency of magnetization transfer in solid state NMR experiments. If the fields are inhomogeneous the cross polarization (CP) experiment transfers magnetization in only a thin slice of sample rather than throughout the entire volume. Asymmetric patterns have been observed in plots of the CP signal versus RF field mismatch for an 800 MHz solid-state NMR probe where each channel is resonated in a single-ended mode. A simple model of CP shows these patterns can be reproduced if the RF fields for the two nuclei are centered at different places in the coil. Experimental measurements using B1 field imaging, nutation arrays on extremely short NMR samples, and de-tuning experiments involving disks of copper incrementally moved through the coil support this model of spatially offset RF fields. We have found that resonating the high frequency channel in a double-ended or "balanced" mode can alleviate this field offset problem, and have implemented this in a three-channel solid state NMR probe of our own design.
Keywords:Cross polarization  Magic angle spinning  NMR probe  RF field  RF homogeneity
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号