首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures
Authors:TD Hedman  LJ Groven  KY Cho  RP Lucht  SF Son
Institution:Maurice J. Zucrow Laboratories, Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA
Abstract:Examination of the surface behavior and flame structure of a bimodal ammonium perchlorate (AP) composite propellant at elevated pressure was performed using high speed (5 kHz) planar laser-induced fluorescence (PLIF) from 1 to 12 atm and visible surface imaging spanning 1–20 atm. The dynamics of the combustion of single, coarse AP crystals were resolved using these techniques. It was found that the ignition delay time for individual AP crystals contributed significant to the particle lifetime only at pressures below about 6 atm. In situ AP crystal burning rates were found to be higher than rates reported for pure AP deflagration studies. The flame structure was studied by exciting OH molecules in the gas phase. Two types of diffusion flames were observed above the composite propellant: jet-like flames and v-shaped, inverted, overventilated, flames (IOF) lifted off the surface. While jet-like diffusion flames have been imaged at low pressures and simulated by models, the lifted IOFs have not been previously reported or predicted. The causes for the observed flame structures are explained by drawing on an understanding of the surface topography and disparities in the burning rates of the fuel and oxidizer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号