首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimental and modeling study of the shock tube ignition of a mixture of n-heptane and n-propylbenzene as a surrogate for a large alkyl benzene
Authors:D Darcy  M Mehl  JM Simmie  J Würmel  WK Metcalfe  CK Westbrook  WJ Pitz  HJ Curran
Institution:1. Combustion Chemistry Centre, NUI Galway, Ireland;2. Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
Abstract:Alkyl aromatics are an important chemical class in gasoline, jet and diesel fuels. In the present work, an n-propylbenzene and n-heptane mixture is studied as a possible surrogate for large alkyl benzenes contained in diesel fuels. To evaluate it as a surrogate, ignition delay times have been measured in a heated high pressure shock tube (HPST) for a mixture of 57% n-propylbenzene/43% n-heptane in air (≈21% O2, ≈79% N2) at equivalence ratios of 0.29, 0.49, 0.98 and 1.95 and compressed pressures of 1, 10 and 30 atm over a temperature range of 1000–1600 K. The effects of reflected-shock pressure and equivalence ratio on ignition delay time were determined and common trends highlighted. A combined n-propylbenzene and n-heptane reaction mechanism was assembled and simulations of the shock tube experiments were carried out. The simulation results showed very good agreement with the experimental data for ignition delay times. Sensitivity and reaction pathway analyses have been performed to reveal the important reactions responsible for fuel oxidation under the shock tube conditions studied. It was found that at 1000 K, the main consumption pathways for n-propylbenzene are abstraction reactions on the alkyl chain, with particular selectivity to the allylic site. In comparison at 1500 K, the unimolecular decomposition of the fuel is the main consumption pathway.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号