首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Poly(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: bulk and surface characterization
Authors:Laurence Bes  Ezat Khoshdel  Christopher F McConville
Institution:a Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
b Unilever Research Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, UK
c Department of Physics, University of Warwick, Coventry CV4 7AL, UK
Abstract:Well-defined poly(MMA-b-DMS-b-MMA) triblock copolymers were prepared by copper(I) mediated living radical polymerization. This was achieved by polymerization of methylmethacrylate (MMA) with different concentrations of 2-bromoisobutyrate terminated polydimethylsiloxane (PDMS). The polymerization occurred in controlled manner with the molecular weight found by 1H NMR close to that predicted and a narrow molecular weight distribution (Mw/Mn∼1.2). Copolymers were obtained with Mn=2100, 4900, 10 100 and 29 500 g mol−1 respectively with poly(MMA) (PMMA) terminal blocks and a central PDMS block of 5500 g mol−1 in each case.DSC analysis showed most of the poly(MMA-b-DMS-b-MMA) triblock copolymers exhibits two Tg’s, one at low temperature corresponding to the Tg of PDMS microphase and a second at high temperature corresponding to the Tg of the PMMA microphase. TEM images show microphase segregation morphology in bulk for the triblock copolymers, with a higher degree of segregation for copolymers containing higher PDMS content. XPS measurements were performed to determine the chemical composition at the surface. For all the copolymers PDMS enrichment is observed at the surface. Copolymers containing higher percentage of PDMS exhibit higher phase separation and better enrichment of PDMS at the surface. The surface tension determined by contact angle measurements of the copolymer film containing 59 mol% of PDMS was 19.15 mN m−1.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号