首页 | 本学科首页   官方微博 | 高级检索  
     

芯片式流通池顺序注射可更新表面反射光谱分析系统的研究
引用本文:王建雅,方肇伦. 芯片式流通池顺序注射可更新表面反射光谱分析系统的研究[J]. 光谱学与光谱分析, 2002, 22(1): 126-130
作者姓名:王建雅  方肇伦
作者单位:东北大学分析科学研究中心,辽宁,沈阳,110004
基金项目:教育部科学技术研究重点项目 (批准号 :2 0 0 0 0 31 )
摘    要:本文提出一种用于流动注射或顺序注射分析进样可更新表面反射光谱法检测的芯片式流通池 ,并将此流通池与顺序注射系统及检测系统相匹配。流通池采用三层组合结构 ,流通池通道刻在中间层的硅橡胶膜上 ,多孔滤层横嵌于硅橡胶膜上的通道处以实现对微珠的截留。流通池检测窗口面积约为 3 6mm2 ,填充微珠体积 2 2 μL ,微珠层厚度 6 0 0 μm。与流通池相接的多股双岔光纤分别与光源、检测器相耦合 ,以实现对微珠表面的反射光谱检测。工作中采用Cr(Ⅵ )与固定在PolysorbC 18微珠表面的DPC的显色反应做为模型系统对流通池和仪器系统进行优化。微珠表面反射光谱在 5 40nm处检测 ,Cr(Ⅵ )采样量 10 0 μL ,载流流速为 1 0mL·min- 1 时 ,线性范围为 0~ 0 6 μg·mL- 1 Cr(Ⅵ ) ,检测限为 6ng·mL- 1 ,分析精度RSD(n =11)为1 5 % ,进样频率 6 4样·h- 1 。文中讨论了分析体系的设计思路 ,微珠层厚度、微珠注入量、载流流速、采样量等因素对检测的影响

关 键 词:芯片式流通池 流动注射 顺序注射系统 反射光谱 Cr(Ⅵ)-DPC 1  5-二苯基卟巴腙 铬(Ⅵ) 光谱分析 显色反应
文章编号:1000-0593(2002)01-0126-05
修稿时间:2001-08-25

Studies on a Sequential Injection Renewable Surface Reflectance Spectrophotometric System Using a Microchip Flow Cell
WANG Jian-ya,FANG Zhao-lun Research Center for Analytical Science,Northeastern University,Shenyang ,China. Studies on a Sequential Injection Renewable Surface Reflectance Spectrophotometric System Using a Microchip Flow Cell[J]. Spectroscopy and Spectral Analysis, 2002, 22(1): 126-130
Authors:WANG Jian-ya  FANG Zhao-lun Research Center for Analytical Science  Northeastern University  Shenyang   China
Affiliation:Research Center for Analytical Science, Northeastern University, Shenyang 110004, China.
Abstract:A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号