Structural Control of Hierarchically‐Ordered TiO2 Films by Water for Dye‐Sensitized Solar Cells |
| |
Authors: | Sung Hoon Ahn Dong Jun Kim Dr. Dong Kyu Roh Won Seok Chi Prof. Jong Hak Kim |
| |
Affiliation: | Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemun‐gu, Seoul 120‐749 (South Korea), Fax: (+82)?2‐312‐6401 |
| |
Abstract: | A facile way of controlling the structure of TiO2 by changing the amount of water to improve the efficiency of dye‐sensitized solar cells (DSSCs) is reported. Hierarchically ordered TiO2 films with high porosity and good interconnectivity are synthesized in a well‐defined morphological confinement arising from a one‐step self‐assembly of preformed TiO2 (pre‐TiO2) nanocrystals and a graft copolymer, namely poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate). The polymer–solvent interactions in solution, which are tuned by the amount of water, are shown to be a decisive factor in determining TiO2 morphology and device performance. Systematic control of wall and pore size is achieved and enables the bifunctionality of excellent light scattering properties and easy electron transport through the film. These properties are characterized by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency, and electrochemical impedance spectroscopy analyses. The TiO2 photoanode that is prepared with a higher water ratio, [pre‐TiO2]:[H2O]=1:0.3, shows a larger surface area, greater light scattering, and better electron transport, which result in a high efficiency (7.7 %) DSSC with a solid polymerized ionic liquid. This efficiency is much greater than that of commercially available TiO2 paste (4.0 %). |
| |
Keywords: | dye‐sensitized solar cells photochemistry polymers self‐assembly titanium dioxide |
|
|