首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure and reactivity of intermediates. N-overlayer on Pd(100), Rh(100) and Pt-Rh(110) and its reaction with H2
Authors:K -I Tanaka  T Yamada
Institution:1. The Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, 106, Minato-ku, Tokyo, Japan
Abstract:Rh(100), Pt(100), and Pt-Rh(100) surfaces are inert for the dissociative adsorption of N2, but they are active for the catalytic reaction of NO with H2 During the reaction on Rh(100) and Pt-Rh(100) surfaces, N atoms are accumulated by making a c(2x2)-N overlayer, but no accumulation of N atoms occurs on Pt(100) surface. The fact that N atoms on the Pt-Rh(100) surface gives the c(2x2) structure indicates that the N atoms have equal affinity to Pt and Rh on the alloy surface. When the c(2x2)-N surface was exposed to H2 of 10-7 to 10-8 Torr, a prominent loss peak being assignable to NHx appeared at 3200 – 3240 cm-1 at around 400 K. The in-situ HREELS study proved that NH are prominent species which are formed during the hydrogenation of the c(2x2)-N, that is, a quasi-equilibrium of N + 1/2 H2 - NH is established. When a clean Pt-Rh(100) (Pt/Rh = 1/3) alloy surface is exposed to NO at about 440 K, the LEED pattern changes sequentially as (1x1) → c(2x2) → c(2x2) + p(3x1) → p(3x1), where the c(2x2) pattern appears instantaneously on the alloy surface of any Pt/Rh ratio but the p(3x1) pattern accompanies a certain characteristic interval times being responsible to the segregation of Rh. The p(3x1) surface reflects the formation of an intermediate of Rh-O complex overlayer and it reacts rapidly with H2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号