首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical prediction of turbulent flow structure generated by a synthetic cross‐jet into a turbulent boundary layer
Authors:Ardalan Javadi  Wageeh A. El‐Askary
Affiliation:1. Department of Mechanical Engineering, Langrud Branch, Islamic Azad University, , Langrud, Iran;2. Faculty of Engineering, Mechanical Power Engineering Department, Menoufiya University, , Shebin El‐Kom, Egypt
Abstract:A detailed numerical study using large‐eddy simulation (LES) and unsteady Reynolds‐averaged Navier–Stokes (URANS) was undertaken to investigate physical processes that are engendered in the injection of a circular synthetic (zero‐net mass flux) jet in a zero pressure gradient turbulent boundary layer. A complementary study was carried out and was verified by comparisons with the available experimental data that were obtained at corresponding conditions with the aim of achieving an improved understanding of fluid dynamics of the studied processes. The computations were conducted by OpenFOAM C++, and the physical realism of the incoming turbulent boundary layer was secured by employing random field generation algorithm. The cavity was computed with a sinusoidal transpiration boundary condition on its floor. The results from URANS computation and LES were compared and described qualitatively and quantitatively. There is a particular interest for acquiring the turbulent structures from the present numerical data. The numerical methods can capture vortical structures including a hairpin (primary) vortex and secondary structures. However, the present computations confirmed that URANS and LES are capable of predicting current flow field with a more detailed structure presented by LES data as expected. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:synthetic jet  flow control  separation control  turbulent boundary layer  large‐eddy simulation  URANS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号