首页 | 本学科首页   官方微博 | 高级检索  
     


The self regulation problem as an inexact steepest descent method for multicriteria optimization
Authors:G.C. Bento  J.X. Cruz Neto  P.R. Oliveira  A. Soubeyran
Affiliation:1. IME, Universidade Federal de Goiás, Goiânia, GO 74001-970, Brazil;2. DM, Universidade Federal do Piauí, Teresina, PI 64049-500, Brazil;3. COPPE/Sistemas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21945-970, Brazil;4. GREQAM-AMSE, Aix-Marseille University, France
Abstract:In this paper we study an inexact steepest descent method for multicriteria optimization whose step-size comes with Armijo’s rule. We show that this method is well-defined. Moreover, by assuming the quasi-convexity of the multicriteria function, we prove full convergence of any generated sequence to a Pareto critical point. As an application, we offer a model for the Psychology’s self regulation problem, using a recent variational rationality approach.
Keywords:Multiple objective programming   Steepest descent   Self regulation   Quasi-convexity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号