首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of oxidation on the surface-near lattice relaxation in FeNi nanoparticles
Authors:Björn Bieniek  Darius Pohl  Ludwig Schultz  Bernd Rellinghaus
Affiliation:(1) Institute for Metallic Materials, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
Abstract:The near-surface oxidation-induced lattice relaxation and compositional changes of FeNi alloy nano-particles are investigated. Using a newly developed transfer system, the particle structure was characterised by means of aberration-corrected HR-TEM prior to exposing the particles to ambient air. This allows for a comparison of oxidised and un-oxidised particles, respectively. Independent of the oxidation, the surface-near and/or interface-near metal lattice was found to be expanded by up to 3%. EELS profiles clearly reveal an enrichment of Fe at the particle surfaces. MD simulations in combination with HR-TEM contrast simulations were conducted to investigate the effect of the Fe enrichment on the structural relaxation. The results show that a surface-near over-stoichiometric enrichment of Fe indeed causes a dilation that counteracts a compression of the lattice at the particle surface as obtained for homogeneously alloyed particles. Besides, the large lattice mismatch between the metallic cores and the NiFe2O4 shells causes the formation of step dislocations in the close vicinities of the interface. In essence, the surface-near lattice relaxation in oxide free particles is found to be due to a segregation of Fe to the surface, whereas in the case of shell–core particles, no systematic influence of the oxide on the lattice relaxation was found.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号