首页 | 本学科首页   官方微博 | 高级检索  
     


Electronic relaxation of deep bulk trap and interface state in ZnO ceramics
Authors:Yang Yan  Li Sheng-Tao  Ding Can  Cheng Peng-Fei
Affiliation:State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China; School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract:This paper investigates the electronic relaxation of deep bulk trap and interface state in ZnO ceramics based on dielectric spectra measured in a wide range of temperature, frequency and bias, in addition to the steady state response. It discusses the nature of net current flowing over the barrier affected by interface state, and then obtains temperature-dependent barrier height by approximate calculation from steady I--V (current--voltage) characteristics. Additional conductance and capacitance arising from deep bulk trap relaxation are calculated based on the displacement of the cross point between deep bulk trap and Fermi level under small AC signal. From the resonances due to deep bulk trap relaxation on dielectric spectra, the activation energies are obtained as 0.22 eV and 0.35 eV, which are consistent with the electronic levels of the main defect interstitial Zn and vacancy oxygen in the depletion layer. Under moderate bias, another resonance due to interface relaxation is shown on the dielectric spectra. The DC-like conductance is also observed in high temperature region on dielectric spectra, and the activation energy is much smaller than the barrier height in steady state condition, which is attributed to the displacement current coming from the shallow bulk trap relaxation or other factors.
Keywords:ZnO  deep bulk trap  interface state  relaxation
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号