首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature- and solvent-dependent binding of dihydrogen in iridium pincer complexes
Authors:Göttker-Schnetmann Inigo  Heinekey D Michael  Brookhart Maurice
Affiliation:Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
Abstract:Mixtures of deuterium labeled complexes (p-XPOCOP)IrH2-xDx (1-6-d0-2) {POCOP = [C6H2-1,3-[OP(tBu)2]2] X = MeO (1), Me (2), H (3), F (4), C6F5 (5), and ArF = 3,5-(CF3)2-C6H3 (6)} have been generated by reaction of (p-XPOCOP)IrH2 complexes with HD gas in benzene followed by removal of the solvent under high vacuum. Spectroscopic analysis employing 1H and 2D NMR reveals significant temperature and solvent dependent isotopic shifts and HD coupling constants. Complexes 1-6-d1 in toluene and pentane between 296 and 213 K exhibit coupling constants JHD of 3.8-9.0 Hz, suggesting the presence of an elongated H2 ligand, which is confirmed by T1(min) measurements of complexes 1, 3, and 6 in toluene-d8. In contrast, complex 6-d1 exhibits JHD = 0 Hz in CH2Cl2 or CDCl2F whereas isotopic shifts up to -4.05 ppm have been observed by lowering the temperature from 233 to 133 K in CDCl2F. The large and temperature-dependent isotope effects are attributed to nonstatistical occupation of two different hydride environments. The experimental observations are interpreted in terms of a two component model involving rapid equilibration of solvated Ir(III) dihydride and Ir(I) dihydrogen structures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号