首页 | 本学科首页   官方微博 | 高级检索  
     


MHD effect of mixed convection boundary-layer flow of Powell-Eyring fluid past nonlinear stretching surface
Authors:S.PANIGRAHI  M.REZA  A.K.MISHRA
Affiliation:1. Department of Mathematics, National Institute of Science & Technology, Berhampur 761008, India;2. Department of Mathematics, Berhampur University, Berhampur 760007, India
Abstract:Sufficient conditions are found for the existence of similar solutions of the mixed convection flow of a Powell-Eyring fluid over a nonlinear stretching permeable surface in the presence of magnetic field. To achieve this, one parameter linear group transformation is applied. The governing momentum and energy equations are transformed to nonlinear ordinary differential equations by use of a similarity transformation. These equations are solved by the homotopy analysis method (HAM) to obtain the approximate solutions. The effects of magnetic field, suction, and buoyancy on the Powell-Eyring fluid flow with heat transfer inside the boundary layer are analyzed. The effects of the nonNewtonian fluid (Powell-Eyring model) parameters ε and δ on the skin friction and local heat transfer coefficients for the cases of aiding and opposite flows are investigated and discussed. It is observed that the momentum boundary layer thickness increases and the thermal boundary layer thickness decreases with the increase in ε whereas the momentum boundary layer thickness decreases and thermal boundary layer thickness increases with the increase in δ for both the aiding and opposing mixed convection flows.
Keywords:stretching surface  non-Newtonian fluid  mixed convection
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号