首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Regioselective Synthesis and Photophysical and Electrochemical Studies of 20‐Substituted Cyanine Dye–Purpurinimide Conjugates: Incorporation of NiII into the Conjugate Enhances its Tumor‐Uptake and Fluorescence‐Imaging Ability
Authors:Dr Manivannan Ethirajan  Dr Ping Chen  Dr Tymish Y Ohulchanskyy  Dr Lalit N Goswami  Dr Anurag Gupta  Dr Avinash Srivatsan  Dr Mahabeer P Dobhal  Joseph R Missert  Prof Paras N Prasad  Prof Karl M Kadish  Prof Ravindra K Pandey
Institution:1. Chemistry Division, PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263 (USA);2. Department of Chemistry, University of Houston, Houston, TX, 77204‐5003 (USA);3. Institute of Photonics and Biophotonics, University of Buffalo (SUNY), Buffalo, NY 14221 (USA)
Abstract:We report herein a simple and efficient approach to the synthesis of a variety of meso‐substituted purpurinimides. The reaction of meso ‐ substituted purpurinimide with N‐bromosuccinimide regioselectively introduced a bromo functionality at the 20‐position, which on further reaction with a variety of boronic acids under Suzuki reaction conditions yielded the corresponding meso‐substituted analogues. Interestingly, the free base and the metalated analogues showed remarkable differences in photosensitizing efficacy (PDT) and tumor‐imaging ability. For example, the free‐base conjugate showed significant in vitro PDT efficacy, but limited tumor avidity in mice bearing tumors, whereas the corresponding NiII derivative did not produce any cell kill, but showed excellent tumor‐imaging ability at a dose of 0.3 μmol kg?1 at 24, 48, and 72 h post‐injection. The limited PDT efficacy of the NiII analogue could be due to its inability to produce singlet oxygen, a key cytotoxic agent required for cell kill in PDT. Based on electrochemical and spectroelectrochemical data in DMSO, the first one‐electron oxidation (0.52 V vs. SCE) and the first one‐electron reduction (?0.57–0.67 V vs. SCE) of both the free base and the corresponding NiII conjugates are centered on the cyanine dye, whereas the second one‐electron reduction (?0.81 V vs. SCE) of the two conjugates is assigned to the purpurinimide part of the molecule. Reduction of the cyanine dye unit is facile and occurs prior to reduction of the purpurinimide group, which suggests that the cyanine dye unit as an oxidant could be the driving force for quenching of the excited triplet state of the molecules. An interaction between the cyanine dye and the purpurinimide group is clearly observed in the free‐base conjugate, which compares with a negligible interaction between the two functional groups in the NiII conjugate. As a result, the larger HOMO–LUMO gap of the free‐base conjugate and the corresponding smaller quenching constant is a reason to decrease the intramolecular quenching process and increase the production of singlet oxygen to some degree.
Keywords:C?C coupling  fluorescence  photodynamic therapy  photosensitizers  structure–  activity relationships  tumor imaging
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号