首页 | 本学科首页   官方微博 | 高级检索  
     


The Electronic Nature of the 1,4‐β‐Glycosidic Bond and Its Chemical Environment: DFT Insights into Cellulose Chemistry
Authors:Claudia Loerbroks  Dr. Roberto Rinaldi  Prof. Dr. Walter Thiel
Affiliation:Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49)?208‐306‐2996
Abstract:The molecular understanding of the chemistry of 1,4‐β‐glucans is essential for designing new approaches to the conversion of cellulose into platform chemicals and biofuels. In this endeavor, much attention has been paid to the role of hydrogen bonding occurring in the cellulose structure. So far, however, there has been little discussion about the implications of the electronic nature of the 1,4‐β‐glycosidic bond and its chemical environment for the activation of 1,4‐β‐glucans toward acid‐catalyzed hydrolysis. This report sheds light on these central issues and addresses their influence on the acid hydrolysis of cellobiose and, by analogy, cellulose. The electronic structure of cellobiose was explored by DFT at the BB1 K/6‐31++G(d,p) level. Natural bond orbital (NBO) analysis was performed to grasp the key bonding concepts. Conformations, protonation sites, and hydrolysis mechanisms were examined. The results for cellobiose indicate that cellulose is protected against hydrolysis not only by its supramolecular structure, as currently accepted, but also by its electronic structure, in which the anomeric effect plays a key role.
Keywords:cellobiose  cellulose hydrolysis  computational chemistry  density functional calculations  NBO analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号