首页 | 本学科首页   官方微博 | 高级检索  
     


Structural Transformation of Bovine Serum Albumin Induced by Dimethyl Sulfoxide and Probed by Fluorescence Correlation Spectroscopy and Additional Methods
Authors:Ashok Pabbathi  Satyajit Patra  Prof. Anunay Samanta
Affiliation:School of Chemistry, University of Hyderabad, Gachi Bowli, Hyderabad 500046 (India), Fax: (+91)?4023011594
Abstract:Determining the structure of a protein and its transformation under different conditions is key to understanding its activity. The structural stability and activity of proteins in aqueous–organic solvent mixtures, which is an intriguing topic of research in biochemistry, is dependent on the nature of the protein and the properties of the medium. Herein, the effect of a commonly used cosolvent, dimethyl sulfoxide (DMSO), on the structure and conformational dynamics of bovine serum albumin (BSA) protein is studied by fluorescence correlation spectroscopy (FCS) measurements on fluorescein isothiocyanate (FITC)‐labeled BSA. The FCS study reveals a change of the hydrodynamic radius of BSA from 3.7 nm in the native state to 7.0 nm in the presence of 40 % DMSO, which suggests complete unfolding of the protein under these conditions. Fluorescence self‐quenching of FITC has been exploited to understand the conformational dynamics of BSA. The time constant of the conformational dynamics of BSA is found to change from 35 μs in its native state to 50 μs as the protein unfolds with increasing DMSO concentration. The FCS results are corroborated by the near‐UV circular dichroism spectra of the protein, which suggest a loss of its tertiary structure with increasing concentration of DMSO. The intrinsic fluorescence of BSA and the fluorescence response of 1‐anilinonaphthalene‐8‐sulfonic acid, used as a probe molecule, provide information that is consistent with the FCS measurements, except that aggregation of BSA is observed in the presence of 40 % DMSO in the ensemble measurements.
Keywords:conformational dynamics  fluorescence correlation spectroscopy  protein aggregation  protein unfolding  solvent effects
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号