首页 | 本学科首页   官方微博 | 高级检索  
     


Chaos in the unbalance response of a rigid rotor in cavitated squeeze-film dampers without centering springs
Affiliation:1. School of Economics and Management, Chang''an University, Xi''an, Shaanxi 710064, China;2. Kunming, Yunnan 650504, China;1. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;2. City college, Kunming University of Science and Technology, Kunming 650051, China
Abstract:Numerical investigation on the unbalance response of a rigid rotor supported by squeeze-film dampers without centering springs revealed some complex bifurcation features that have not been previously reported in the literature. With the variation of the unbalance parameter (U), the period-1 solution was found to undergo a sequence of period-doubling bifurcations that eventually resulted in chaotic motion. The existence of a period-3 solution, which formed a closed bifurcation curve consisting of a pair of saddle nodes, was for the first time observed in such a system. The chaotic attractor arising from the period-doubling cascade of the period-1 solution, which was observed to co-exist with the period-3 attractor in a narrow range of U values, was eventually annihilated in a collision with the unstable period-3 orbit in a boundary crisis. Similar to the bifurcations of the period-1 solution, the period-3 solution was also found to bifurcate into solutions of period-6 and period-12, which eventually led to chaotic motion. A chaotic attractor was also observed to co-exist with a period-4 orbit. The period-4 orbit was found to undergo a sequence of reverse period-doubling bifurcations resulting in a large amplitude period-1 orbit. The occurrence of non-synchronous and chaotic motion in rotating machinery is undesirable and should be avoided as they introduce cyclic stresses in the rotor, which in turn may rapidly induce fatigue failure. The magnitude of rotor unbalance where non-synchronous and chaotic motion were observed in this study, although higher than the permissible unbalance level for rigid rotating machinery, may nevertheless occur with in-service erosion of the rotor or in the event of a partial or an entire blade failure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号