首页 | 本学科首页   官方微博 | 高级检索  
     


Spectral time moment analysis of microgel structure and dynamics
Authors:Kiril A. Streletzky  John T. McKenna  Rami Mohieddine
Affiliation:Department of Physics, Cleveland State University, Cleveland, Ohio
Abstract:The structure and dynamics of crosslinked nanoparticles (microgels) made out of hydroxypropylcellulose (HPC) polymer chains were studied using dynamic light scattering spectroscopy. The microgel light scattering spectra were found to be highly nonexponential requiring a spectral time moment analysis in which the spectra were fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single spectral mode. At room temperature microgel spectra reveal three modes. Two faster modes are almost diffusive and correspond to apparent sizes of 25 and 450–650 nm. The slowest mode is independent of scattering angle and is reminiscent of the slow polymer mode observed in identical non‐crosslinked polymer solutions. When solution temperature is varied from 23 to 45°C and back, the microgel undergoes a reversible volume phase transition between 40 and 45°C. According to the time‐moment analysis, above the transition temperature two faster modes collapse into one with apparent hydrodynamic radius of 100–150 nm, while the slow mode remains largely unchanged. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 771–781, 2008
Keywords:diffusion  dynamic light scattering  microgels  microstructure  polysaccharides
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号