首页 | 本学科首页   官方微博 | 高级检索  
     


In-plane conductivity of a layered large-bipolaron liquid
Authors:David Emin
Affiliation:Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
Abstract:Distinctive normal-state properties of cuprate superconductors follow from their charge carriers forming a large-bipolaron liquid. The very weak scattering of the liquid’s slow-moving heavy-massed excitations by acoustic phonons yields a scattering rate that is less than the Debye frequency. The liquid’s moderate mobility, >1 cm2/V-sec at 300 K, results from its weak scattering compensating for its large mass. In resolution of a long-standing dilemma, the dc resistivity resulting from scattering by long-wavelength phonons remains nearly proportional to temperature to well below the Debye temperature. Above the Debye frequency, the frequency-dependent conductivity is dominated by excitation and photo-ionization of the liquid’s self-trapped electronic carriers. Below the Debye frequency, the frequency-dependent conductivity is dominated by the liquid’s Drude-like collective motion. The ‘gap’ between these two domains sharpens with decreasing temperature as phonon scattering of the liquid’s collective excitations diminishes. The high-frequency electronic excitations survive in the superconducting state.
Keywords:polarons  large bipolarons  electrical conductivity  cuprates  superconducting materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号