首页 | 本学科首页   官方微博 | 高级检索  
     


Improved diode properties in zinc telluride thin film-silicon nanowire heterojunctions
Authors:Funda Aksoy Akgul  Hasan Huseyin Gullu  Husnu Emrah Unalan  Rasit Turan
Affiliation:1. Department of Physics, Nigde University, 51240 Nigde, Turkey;2. Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara, Turkey;3. Department of Physics, Middle East Technical University, 06800 Ankara, Turkey;4. Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
Abstract:In this study, structural and optoelectronic properties and photodedection characteristics of diodes constructed from p-zinc telluride (ZnTe) thin film/n-silicon (Si) nanowire heterojunctions are reported. Dense arrays of vertically aligned Si nanowires were successfully synthesized on (1 1 0)-oriented n-type single crystalline Si wafer using simple and inexpensive metal-assisted etching (MAE) process. Following the nanowire synthesis, p-type ZnTe thin films were deposited onto vertically oriented Si nanowires via radio frequency magnetron sputtering to form three-dimensional heterojunctions. A comparative study of the structural results obtained from X-ray diffraction and Raman spectroscopy measurements showed the improved crystallinity of the ZnTe thin films deposited onto the Si nanowire arrays. The fabricated nanowire-based heterojunction devices exhibited remarkable diode characteristics and enhanced optoelectronic properties and photosensitivity in comparison to the planar reference. The electrical measurements revealed that the diodes with nanowires had a well-defined rectifying behaviour with a rectification ratio of 104 at ±2 V and a relatively small ideality factor of n = 1.8 with lower reverse leakage current and series resistance at room temperature in dark condition. Moreover, an open-circuit voltage of 100 mV was also observed under illumination. Based on spectral photoresponsivity measurements, the nanowire-based device exhibited a distinct responsivity and high detectivity in visible and near-infrared (NIR) wavelength regions. The device characteristics observed here offer that the fabricated ZnTe thin film/Si nanowire-based p–n heterojunction structures will find important applications in future and will be a promising candidate for high-performance and low-cost optoelectronic device applications, NIR photodedectors in particular.
Keywords:silicon nanowires  RF magnetron sputtering  heterojunctions  optoelectronic properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号