首页 | 本学科首页   官方微博 | 高级检索  
     


Novel PU‐type polymeric photoinitiator comprising side‐chain benzophenone and coinitiator amine for photopolymerization of PU acrylate
Authors:Jun Wei  Fang Liu  Zhimin Lu  Ling Song  Dongdong Cai
Affiliation:Department of Polymer Materials and Engineering, School of Material Engineering, Key Laboratory for Ecological‐Environment Materials of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China
Abstract:A novel diamine 3,5‐diamino‐4′‐phenoxylbenzophenone (DAPBP) was synthesized from the reaction of 3,5‐diamino‐4′‐chlorobenzophenone (DACBP) and phenol. Then through the polycondensation of DAPBP, toluene‐2,4‐diisocyanate (TDI), and N‐methyldiethanolamine (MDEA), we obtained a PU‐type polymeric photoinitiator containing side‐chain benzophenone (BP) and tertiary amine in the same macromolecule (PUSOA). Another polymeric photoinitiator without coinitiator amine in polymer chain (PUSO) was also synthesized for comparison. FT‐IR, 1H NMR, and GPC analyses confirmed the structures of monomer and polymeric photoinitiators. The UV–Vis spectra of PUSOA, PUSO, and DAPBP are similar, and all exhibit the maximal absorption near 290 nm. ESR spectra indicate that PUSOA can generate active species most efficiently. The photopolymerization of PU acrylate, initiated by PUSOA, PUSO/MDEA, DAPBP/MDEA, and BP/MDEA, was studied by differential scanning photocalorimetry (photo‐DSC). The results show that the in‐chain coinitiator amine can significantly improve the photoefficiency of the polymeric photoinitiator and the PUSOA is more efficient for the polymerization of PU acrylate than its low‐molecular‐weight counterpart. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:polymeric photoinitiator  coinitiator amine  benzophenone  photopolymerization  polyurethane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号