Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials |
| |
Authors: | Du Chunfang Yang Huaming |
| |
Affiliation: | Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha, China. |
| |
Abstract: | Aluminum-containing hexagonally ordered mesoporous silica Al-MCM-41 was synthesized by hydrothermal treatment of leached products produced by pre-grinding and subsequent acid leaching of natural kaolin, without addition of silica or aluminum regents. The resulting Al-MCM-41 had a high surface area of 1041 m(2)/g, a pore volume of 0.97 mL/g, and an average pore diameter of 3.7 nm with narrow pore size distribution centered at 2.7 nm. During the synthesis process of Al-MCM-41 from natural kaolin, the evolutions of chemical environments for Si and Al atoms should be emphasized. Wide angle X-ray diffraction (WAXRD), high-resolution transmission electron micrographs (HRTEMs), solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared spectroscopy (FT-IR) were used to trace the variations of chemical structures. Pretreatment of grinding and subsequent acid leaching acted as an important role in the whole synthesis process. NMR spectroscopy showed that Q(3) structure (Si(SiO)(3)(OH)), condensed Q(4) framework structure (Si(SiO)(4)), also the octahedral and tetrahedral Al existed in the leached sample and Al-MCM-41, with higher chemical contents of Q(4) structure and the octahedral Al in final product Al-MCM-41 than those in the leached sample. A possible mechanism for the formation of Al-MCM-41 from natural kaolin was suggested. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|