Aggregation kinetics and gel formation in modestly concentrated suspensions of oppositely charged model ceramic colloids: a numerical study |
| |
Authors: | Piechowiak M A Videcoq A Ferrando R Bochicchio D Pagnoux C Rossignol F |
| |
Affiliation: | SPCTS, UMR 6638, ENSCI, CNRS, Centre Européen de la Céramique, Limoges, France. |
| |
Abstract: | Aggregation kinetics and gel formation in aqueous suspensions that undergo heteroaggregation are studied by means of Brownian dynamics simulations. The simulated system, described in a previous paper [M. A. Piechowiak, A. Videcoq, F. Rossignol, C. Pagnoux, C. Carrion, M. Cerbelaud, R. Ferrando, Langmuir, 2010, 26(15), 12540-12547.], is constituted of two kinds of synthesized, almost equally sized colloids: silica particles that are negatively charged and alumina-coated silica particles that are positively charged. The interactions between colloids are modeled by the DLVO potential. Several compositions are analyzed, from silica-rich to alumina-rich cases. The particle volume fraction φ is varied in the range 6-12%. The study of the aggregation kinetics allows us to clarify the effect of those variations on the clustering process. Gelation is analyzed by detection of spanning clusters in each x-, y-, z-direction of the cubic simulation box. Percolating networks start to be observed from φ = 7%, a low value of the volume fraction close to the solid volume fraction experimentally measured in sediments of those suspensions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|