首页 | 本学科首页   官方微博 | 高级检索  
     


Chaotic and periodic emission of high power solid state lasers
Authors:R. Hauck  F. Hollinger  H. Weber
Affiliation:Department of Physics, University of Kaiserslautern, Kaiserslautern, Fed. Rep. Germany
Abstract:Nonlinear, dynamical systems even with a few degrees of freedom may show chaotic or periodic behaviour, depending on the parameters of the system. Recently it was demonstrated, both experimentally and theoretically, that the temporal emission of a laser can become chaotic, if several longitudinal modes oscillate [Brunner and Paul (1983), and Abraham et al. (1982)]. The chaotic emission is caused by the nonlinear interaction of the modes and the longitudinal gain structure [Komtomtseva et al. (1982)]. In this paper it is pointed out that the transverse mode structure and the radial gain profile produced by the transversal modes, may give rise to temporal instabilities of the laser emission. If the relevant parameters of the laser oscillator — Fresnel number, resonator losses, pump rate — exceed certain critical values, the output intensity becomes unstable. The damped relaxation oscillation changes into undamped periodic oscillation or, with increasing values of the above parameters, into chaotic emission. The theory, using the nonlinear Kirchhoff-Fresnel integral equation and the rate equation approach, is confirmed by experimental results.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号