首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polarizable and flexible model for ethanol
Authors:Wang Shihao  Cann N M
Institution:Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Abstract:A polarizable, flexible model for ethanol is obtained based on an extensive series of B3LYP/6-311++G(d,p) calculations and molecular dynamics simulations. The ethanol model includes electric-field dependence in both the atomic charges and the intramolecular degrees of freedom. Field-dependent intramolecular potentials have been attempted only once previously, for OH and HH stretches in water P. Cicu et al., J. Chem. Phys. 112, 8267 (2000)]. The torsional potential involving the hydrogen-bonding hydrogen in ethanol is found to be particularly field sensitive. The methodology for developing field-dependent potentials can be readily generalized to other molecules and is discussed in detail. Molecular dynamics simulations of bulk ethanol are performed and the results are assessed based on comparisons with the self-diffusion coefficient N. Karger et al., J. Chem. Phys. 93, 3437 (1990)], dielectric constant J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996)], enthalpy of vaporization R. C. Wilhoit and B. J. Zwolinski, J. Phys. Chem. Ref. Data, Suppl. 2, 2 (1973)], and experimental interatomic distributions C. J. Benmore and Y. L. Loh, J. Chem. Phys. 112, 5877 (2000)]. The simultaneous variation of the atomic charges and the intramolecular potentials requires modified equations of motion and a multiple time step algorithm has been implemented to solve these equations. The article concludes with a discussion of the bulk structure and properties with an emphasis on the hydrogen bonding network.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号