首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of different gettering techniques for Cu–p+ versus polysilicon and oxygen precipitates
Authors:R Hoelzl  KJ Range  L Fabry
Institution:(1) Institute of Inorganic Chemistry, University of Regensburg, 83953 Regensburg, Germany, DE;(2) Wacker Siltronic AG, P.O. Box 1140, 84479 Burghausen, Germany, DE
Abstract:We performed measurements of gettering efficiencies for Cu in silicon wafers with competing gettering sites. Epitaxial wafers (p/p+) boron-doped with a polysilicon back side allowed us to compare p+ gettering with polysilicon gettering. We further measured metal distributions in p+/p- epitaxial test wafers, with the p- substrate wafers pretreated for oxygen precipitation to compare p+ gettering with oxygen precipitate gettering. Our test started with a reproducible spin-on contamination in the 1012 atoms/cm2 range, followed by thermal treatment in order to redistribute the metallic impurity. Wafers were then analyzed by a novel wet chemical layer-by-layer etching technique in combination with inductively coupled plasma mass spectrometry. This led to “stratigraphical” concentration profiles of the impurity, with typical detection limits of 5–10×1012 atoms/cm3. Twenty-five percent of the total Cu contamination in the p/p+/poly wafer was found in the p+ layer, whilst 75% was gettered by the polysilicon. Obviously, polysilicon exhibits a stronger gettering than p+ silicon, but due to the large distance from the front surface, polysilicon was less effective in reducing impurities from the front side of a wafer compared with p+ gettering. An epitaxial layer p+ on top of p- substrates with oxygen precipitates gettered 50% of the total Cu; while the other 50% of the Cu was measured in the p- substrate wafer with oxygen precipitates. Without oxygen precipitates, 100% of the spiked Cu contamination was detected inside the p+ layer. Gettering by oxygen precipitates thus occurs in the same temperature range as that where p+ silicon begins to getter Cu. Received: 3 September 2001 / Accepted: 17 October 2001 / Published online: 27 March 2002
Keywords:PACS: 81  65  Tx  61  72  Yx  82  20  Wt
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号